
UDC 539.31 

ON A METHOD OF SOLVING MECHANICS PWBLEMS FOR 
DOMAIN WITH SLITS OR THIN INCLUSIONS 

PMM Vol. 42, K 1, 1978, pp. 1.22 - 135 
G.Ia. POFOV 

(Odessa ) 
(Received December 8, 19’76) 

A method is developed to solve problems of the mechanics of a continuous 
medium and mathematical physics for domains with slits (cracks) or thin in- 
clusions based, firstly, on an integral transform in a variable intersecting the 

slit or inclusion, secondly, on the formulation of the boundary value problem 
under investigation in the form of a system of first order differential equations. 

The method is illustrated by specific mechanics problems. 

R. V. Serebrianyi [l I apparently first used the idea of an integral (Fourier ) 
transform on a line intersecting a slit in solving the problem of the bending of 

aninfiniteplate , hinge-slit along an infinite line. 

1. Let us consider the boundary value problem for the equation 

in the domain shown in Fig. 1, with boundary conditions of general type on the coor - 
dinate lines 

E. = Es, E = E,; ‘1 = rll, 11 = l?4. 

We assume that there is a slit or a 
thin inclusion on the coordinate line 

5 = 1;i for q2<q <q3, i.e., 
a line on which the required function 

becomes discontinuous (but its nor - 
ma1 derivative is specified). 

(1.2) 

.aU I all 
dE <r-o = aE, I ?.I+0 

= g (rl) 

Fig. 1 
or the normal derivative becomes 
discontinuous (but values of the 
function are specified, i. e., 

u 141-O = 24 14r+o = g (a 
au au 
aE 41-o 

-- 
at r;l+o 

= x (9) (q2 G 71< r13) (1.3) 

Here X (q) is an unknown function equal to zero on the continuation of the slit 
or inclusion , and g (‘Q) is a specified function. 

The usual means (for example [2] ) of solving such problems by the integral trans- 
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form method is based on partitioning the domain under investigation (Fig. 1) into two 
parts by a coordinate line E = E1 containing the slit. Subsequent connection of the 
solutions for these domains with conditions (1.2) or (1.3) taken into account results in 

dual integral equations. 
Let us use another way of solution which does not require partitioning the initial 

domain into parts and is based on the presence of a transform in the variable E in the 

interval (go, E,) expressed in the general case by the formulas 

( 1 can represent a certain line in the plane of the complex variable h ) . 
To realize the method developed here, let us multiply both sides of (1.1) by rl-l 

(,$,)K (E, J,) and let us integrate by parts separately in the intervals (&,, El) and 
(&, 8,) . Use of a differential equation and boundary conditions of the Sturm- 

Liouville problem , whose solution [3 ] is the kernel K (g, A), and also of the no - 
tation (1.4 ) , permits reduction of (1.1) to the following : 

-(92+h)u,,=n(h)[uI~,_(I--uIE,H)]- 
(1.5) 

For example, let the condition (1.2) be realized on the slit (inclusion), then we 

can write in place of (1.5) 

r”2 &+sf uh) -(qs + h)UA = n(h)%(q) h<rl<v4) 
(1.6) 

Boundary conditions transformed along the boundary lines ‘1 = ?ll and ‘1 = q4 
having the following form in the general case [4] 

Uj [U).] = yj _(i= OS I) (1.7) 

should still be added to the equation obtained. 
If the Green’s function G (q, a) of the semi-homogeneous (rj = 0, j = 0,1) 

boundary value problem (1.6). (1.7 ) is constructed and the basis system of functions 
I#j (Q, j = 0,1 is known which satisfies the homogeneous differential equation (1.6 ) 
and the boundary conditions 

Uj [$k] = 8j, (i, k ~0, 1) (1.8) 

then the solution of the boundary value problem (1.6)) (1. ‘7 ) will have the form C5 1 

(1.9) 

Furthermore, using the inversion formula (1.4)) we find the original u (E, q) 
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for the transform (1.9). Substituting its derivative with respect to E into (1.2). we 
arrive at an integral equation to determine X (q). As a rule, it turns out to besingular. 

To extract the singular part explicitly beforehand, it is recommended to take the 
Green’s function in the following form: 

fl. 10 1 

j=O 

where CD (q, a) is understood to be a fundamental function which is used to express 
the solution u (q) of (1.6) with an arbitrary right side f (0) by the formula 

u (1) = “s’@(q, o>f(u)do (1.11) 

lb 

If (1.8 ) is taken into account with the governing properties of the Green’s function 
[4,5 1, it can be seen that (1.10 ) actually defines the Green’s function of the boundary 

value problem (1.6 ) , (1.7 ) . 

N o t e . It is precisely the first term in (1.10 ) which determines the singular part 
in the kernel of the integral equation mentioned. The formula (1.10 ) presented here 
for the Green’s function is apparently new. It remains valid even for differential equ 8. 
ations of arbitrary order (only the quantity of terms under the summation sign changes). 

It is simplest to construct the fundamental function CD (q, cr) by using the in- 
tegral transform 

1 K2 (rlv IL) G’ (‘I) f h) dq = h f (rl) = s R2 (11, p) fph (CL) (1.12) 
90 1, 

whose kernel is the solution of the Sturm- Liouville problem for the equation 

7-2 (rl) + [P2 h) $ K23 - qzKz = - pK2 (~ln<~<%J (1.13) 

In the case of (1.6 ) with constant coefficients, the fundamental function con - 

strutted in such a way becomes dependent on the difference between the arguments and 

it turns out to be convenient to take one of the following 

@ @I7 0.) = @ (rl - a! * Q, (rl + 0) (1.14) 

as @ (TJ, a) in(1.10). 

2. Let us realize the scheme elucidated in an example of the following problem. 
There is a thin stiff inclusion in the form of a strip @ \( 2 < c (a < 1); -cc < 

z < 00 in the y = 0 plane in an elastic layer (0 < z < 1, -oo < y, z cm) 
with the clamped edge 2 = 1 . Find the stress field if a uniformly distributed she- 

aring (i. e., acting along the z -axis ) load is applied to the outer edge of the in- 
clusion mentioned. This antiplane problem is equivalent to the boundary value problem 

nw = 0 (--<?4<~, 6<2<1) (2.1) 
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dw -I ax x&J 
= 0, w Iszl = 0 %z = P dy auJ P) 

with compliance with the following conditions on the inclusion ( it is the shear mo- 

dulus ) representing the analog of the conditions (1.3 1 

$/zIu=-0 - %A? Iv=l+o = CL [-g- /_o - g i+o] = x f4 (2.2) 
C?W 
ax y=o I 3 0 (O< x<u, x(~)=:o,~e(o? a)) 

Applying a Fourier transform in $ to the Laplace equation from (2.1) with a 
partition (according to the scheme in Sect. 1 ) of the section of integration into two 

(-oat - 0) (+ 0, oo) and (2.2) taken into account, we arrive at the following an- 

alog of the boundary value problem (1.6), (1.7): 

(2.3) 

dwg (x) 
dx I X=0 

= wfi (1) = 0 (we (x) = j e’bvw (3, y) dtj) 
-00 

We easily find the basis system of functions satisfying the boundarv conditions (1.8 1 

(2.4) 

By using the Fourier transform in y (performing the role of the transformation 
(1.12) here ) applied to (2.3), we determine the fundamental function 

(2.5) 

With the first espression from (1.14 ) substituted and (2.4 > and (2.5 1 taken into 
account, (I. IO ) results in the following expression for the Green’s function of the 

boundary value problem (2.3 ) : 
(2.6) 

Using it, we find dwp (5) / ds. 
Subsist utilization of the inversion formula for the Fourier transform and ev - 

aluation of the known integrals in the transformation parameter p permit obtaining 

an expression for awl 4x. Substituting it into (2.2 ) results in the following integral 
equation n 

s ’ cosec * (1: - 4) 
2 x(E)% = 0 (I~t<:o 

-a 

to determine the function x (E) (continued evenly to negative values of the ar~ment~. 
The equation obtained admits of a simple exact solution containing an arbitrary 
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constant. The value of this latter can be determined from the equilibrium condition 
for the inclusion. 

3. The scheme elucidated in Sect. 1 is generalized in an evident manner to the 
case of a finite number of inclusions (or slits ) located on the coordinate lines E = const 
(there will be a system instead of just one integral equation), It can also be extended to the 

case of more general conditions on the inclusions than (1.2) or (1.3 ) . 
In principle, the presence of inclusions on both the lines E = const and on the 

lines q = const is more complex. 
In addition to inclusion (slit) on the line % = %i (Fig. 1) depicted in Sect. 1, 

there is still an inclusion (slit) on the line q = Q. For definiteness, let us consider 

that conditions of the type (1,2) are realized thereon, i. e., 

u lwo - l-3 Ill*+0 = $ (%I (YJ (%I = 0, E e (%2, %3)) (3.1) 

au I au 
arl a-0 = q I 4:+0 

=h(%) (42<4<E.?E) 

Applying the transformation (1.4) to the first of these conditions yields 

This condition now needs to be appended to the boundary value problem (1.6 ) , 
(17 1. In order to satisfy it, we first find the auxiliary function uh* (q), which 
should have the jump (3.2) to satisfy the differential equation (1.6) in the intervals 

(qo, qs) and (Q, q*), whereqa < Q, ?l* > ?lr,andtheboundaryconditionsonthe 

Strum - Liouville problem for the kernel of the integral transform (1.12 ) as well. 
Such a function is easily found by using this transformation applied to (1.6) in the 

interval (Q, q*) partitioned into two: (qo, ~ls - 0) and (q2 + 0, 11,) and 
taking account of the jump (3.2). It will have the form 

z&x*(q) = - c n (V XI* + n2 (CL) *A 
Ra (rlc PL) da2 b-4 

(3.3) 
. h+P 
It 

Now, if values of the functionals contained in (1.7 ) 

u, IuA*l = yj* (3.4) 

are found and the basis system of functions satisfying the condition (1.8 ) is available, 
it can be seen that the solution of the boundary value problem (1.6 ), (1.7 ) in the 

presence of the jump (3.2 ) will have the form 

UA (rl) = uh* (?I) + $ (Vi - %*I43 (rl) 
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Subsequent utilization of the inversion formula from (1.4 ) permits finding the 
function U (E, q) and its derivatives. Realization of the second conditions from 
(1.2) and (3.1) on the inclusions (slits) will result in a system of integral equations in 

the required functions x (5) and $ (q). 
Let us illustrate the scheme elucidated in the problem selected in Sect. 2 by adding 

the presence of a crack on the segment z = a, -b f y < b with the conditions 

w (a - 0, Y) - w b + 0, Y) = II (Y) (3.6) 
3W I 3W 

x a_O = ax I a+O = 0 (I Y I < 4 

to it, which will result in complicating the boundary value problem (2.3 ) because of 
compliance with the condition 

WB (a - 0) - wo (a + 0) = $3 (3.7) 

obtained by a Fourier transformation of the first conditions (3.6) relative to Y . 
Let us take the Fourier cosine transform 

m m 

s 
c0scmf@)&2=fa, f(z)=; 

. 

s 

(3.8) 

cosazf,da 

0 0 

as the analog of the integral transform (1.12 ) . 
Applying it to the differential equation (2.3 ) with the partition of the interval 

(0, 00) into (0, a - 01, (a + 0, ~1 and the jump (3. ‘7 ) taken into account, we 

find the analog of the function (3.3 ) 

z+* (x) = $ 
7 a sin an$)p + p-lx, 

s 

(3.9) 

aJ+ flz cos axda 
0 

In the case selected, the values of the functionals from (3.4 ) have the form 

dw*p 
yo* = - 

dz I x=0 
= 0, yl* = w,q* (1) (yj = 0) (3.10) 

and the basis system of functions is determined by (2.4). Hence, according to (3.5 ) 
the solution of the boundary value problem (2.3) in the presence of the jump (3. ‘7) 
will be 

wp (x) = wp* (5) - yl* ch fix sech fi (3.11) 

Using the inversion formula for the Fourier transform, we hence find w (5, Y). 

After evaluation of the known integrals in the parameter fi we arrive at the fol- 
lowing formula 

IYW 3t “, 
az=-T s 

sin l/,n (Z - 5) ch l/gcyx (I!,) 
shz l12ny + sin2 $,n (x - E,) dS - 

(3.12) 

--a 
b 

a ’ 

--z SC arctg 
shV2x (9 -?/I 

sin l12n (a - r) f arc tg sh'/zn (9 -Y) +‘(M 
sin l/,n (a + r) n dV 

-b 
1 

Here the function X (5) is continued evenly to negative values of the argument. 
while the derivative of the function $ (y) appears because of integration by parts. 

Using the formula obtained, we realize the remaining condition on the inclusion (2.2 ) 
and on the crack (3.6). Weconsequentlyarrive at the following system of singular 
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integral equations 

1 a b 

s x (4) 4 
F sin ‘Ia JI (E - 5) - s ’ I s(x,rl)--(--x,rl)l~‘(rl)dll=O (Ixl6n) (3.13) 

--(1 -b 
h ; 
U 1 

_b shVafim--y) --s@v’l- Y) ‘V(q)drl+ I 
n 

1 ; 

2cL I civ, E)x(4)dE=O (I~l<b) 
--a 

sh +-zy cos ‘[g (a + x) 

’ (I 1 y, z sha l/zny + sins llnn (a + Z) 
ch l/gcy sin r/s n (a - 4) 

’ c (Y1 5) = sh’Al/,ny +sinal/,n(a-6) 

Let us note that the derivative of the expansion of the crack 9,’ (Y) can be found 

from this system. However, the stress intensity factor [S] is of greatest interest. In the 

case of plane problems, the relation of this factor to the factor of the singularity in the 
derivative of the crack expansion is established by analyzing complex potentials [6 1. 
An analogous relation can be proposed in the general case also, if the problem is stated 
in the form of a singular equation in the derivative of the crack expansion. To do this, 
the known behavior of Cauchy type integrals given on a segment as the variable appro- 

aches the ends of integration from an outer and inner point of the mentioned segment 
should be used [7]. 

4. In examining the more complex boundary value problems of mathematical phy- 
sics and the mechanics of continuous media, we must deal with not one second order 
equations but with a system of such equations or with one equation but of an order 
higher than the second (elasticity theory, theory of plate and shell bending, etc. ). 

To solve such problems with slits (cracks ) or thin inclusions by the method elu - 
cidated above, the differential equation of the boundary value problems under investi- 

gation should be written as a complete system of first order differential equations, which 

permits writing most simply and realizing the condition on the slit or inclusion. 
Let us illustrate this in a plate bending problem. A rectangular 

O\(Y,(b,~,-- 

(a, \< z < a,, 

a0 > b) plate, hinge-supported along the edges y = 0, 
y = b is subjected to the effect of a normal load 4 (x, Y) = Q distributed nor- 

mally over the whole domain mentioned, When this load reaches the specific quantity 
Q = QP at the center of the plate, the normal stress 0, reaches the yield point 

UP (or M, = M, ). A further increase in the load 4 > qp under the assump- 

tion of no hardening of tie material can result in the occurrence of a linear plastic 

hinge on the segment co < z < ci on which the condition 

M,, I,,=1 = Mp (co < x \( cl, 1 = y2b) 

will be satisfied. (Such a hinge definitely occurs if there is a shallow crack on the 

seg ment mentioned ) . 

It is required to clarify the stress redistribution in the plate upon the occurrence of 

the plastic hinge mentioned. 
To solve the problem posed by the method developed here, let us start from the 

complete system of first order equations in the bending characteristics: 
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Taking account of the hinge support of the plate along the edges y = 0, b, we 
apply the finite Fourier sine and cosine transforms defined by formulas of the type 

u8=~Dw(x,y)sin/3ydy (B,?, n=O,i,Z,...) 
0 

(4.2) 

0 0 

to this system, 
Upon performing the integration by parts associated with this operation, the range 

of ~tegrati~ should be separated into two: (0, 1 - 0), (I + 0, b) , and it should 

be taken into account that, the angle of rotation ‘pr, becomes discontinuous with pass- 
age through the hinge, i. e. , 

‘Fv b-0 - q$ p, = x (z) ix (4 = 09 22 e (Cot cdl (4.3) 

We will consequently have (we consider the Poisson’s ratio zero > 

@x8 
- - fiQlrC = - q*, dx 

+ + /3&f,” - Qv" zz 

d”&/ 
yjy + Qvc = Iyl/‘, V,c = Qxa - f&f;, 

By elimination and linear combinations, the system obtained can be reduced to 

the differential equation 

g+ Pz = f (%<X<4 (4.4) 

’ : O--l 0 0 

0 p= 2gz -1 0 

0 * 0 O’f== 0 

-04 0 0 0 - q5 - fP sin @lx (x) 

in the vector function (column matrix) z (x) = (us, M,“, (psa, v,‘). If the boundary 
conditions on the edges x = aj which have the following form 

AZ (a(t) + Bz ($1 = Y (4.5) 

in the general case, is added to the equation obtained ( A, H are matrices, and 
Y is a fourth order column matrix ) , then we arrive at a one-dimensional boundary 

value problem for the vector 2. If the matrix Green’s function (the Green’s matrix 
G (2, 5) ) is constructed for the semi-homogeneous (y = 0) boundary value problem 
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(4.4 ), (4.5) and the basis matrix ‘4 (Z) satisfying the equation and boundary conditions 

dYl&fPY -0 (4.6) 
AY (a,,) + BY (al) = 1 (4.7 1 

then the solution of the inhomogeneous boundary value problem (4.4 ) ) (4.6 ) can be 
obtained bymeans of the formula 

(4.8) 

which is the analog of (1.9). 

N o t e. If we do not proceed from a system of first order equations but from the 
equation of Sophie Germain t then we have one scalar fourth order equation instead of 

(4.4). However, X” (& with nonintegrable singularities at the points 5 = cj , will 
be contained in its right side. Such difficulties do not occur in the solution of different 

mathematical physics problems (in particular, the plate bending problem), and the 
method elucidatedcan be applied directly to the high order governing equations (par - 

titularly to the Sophie Germain equation ) if this is certainly convenient, 

Finding the vector z (z) and using the inversion formula for the finite sine trans- 
form, we find M, (z, y). This permits realization of the condition (4.1) I obtaining 

thereby the integral equation for the desired function 1c (2). 
As we see, the principal difficulty (technical) is in constructing the Green’s matrix. 

Since the general method [4] of constructing such matrices is awkward and inconvenient 

from the viewpoint of extracting the singular parts in the equations obtained, a special 
method of cons~ct~g the Green’s matrix is elucidated below. 

5, For generality, let us consider the yector z (x) to be of n -th order. A SO- 
called matrizant i6 1, i. e, , the solution 2 (5) of (4.6 > which possesses the property 

2 (0) = 1 (5.1) 

can be constructed for equations of the type (4.4 ) with constant coefficients. 
Indeed, let us introduce the matrix 

M (5) = 15 -I- p 
(5.2) 

into the considerations, whose determinant will evidently be a polynomial of degree 

n, Le., n-1 

~1~~~)~ = Qn(5) = II (5-G) 

(5.3) 

j=O 

If 5 does not coincide with any of the roots (they may even be multiple) of this 
polynomial, then there will exist 

M-’ (5) = A* (5) Qn-' (5) (5.4) 

where A* f 5) is the transpose matrix to the matrix of cofactors for the elements of 
the matrix(5.2). 
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Let us show that 
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(5.5) 

(C is any closed contour enclosing all the zeroes of the polynomial QJ. 
Let us substitute (5.5 > into (4.6 1, taking into account that the matrix (5.4) is 

inverse to the matrix M ( 5) and let us use the Cauchy theorem. We consequently 
arrive at an identity. There remains to show the validity of the equation (5.1) which 
is equivalent to the following: 

(5.6) 

In order to see its validity, it is sufficient to compute the residue of the integrand 
(5.6) for 5 = 00. 

The expression (5.5 ) obtained for the matrizant can evidently be written in the 
following form : 

n-1 

(5.7) 

Knowing the matrizant , we can construct the basis matrix possessing the property 

(4.7 1 
Y (5) = 2 (5) c (5.3) 

It can be shown, exactly as in the case of (1. lo), that the following formula for 
the Green’s matrix of the boundary value problem (4.4), (4.5) is valid 

G (z, E) = @ (z, E) - Y (x) [A@ (a,, E) + BQ, (a,, E)l (5.9) 

where @ (z, E> is the fundamental matrix performing the same role as does the 

fundamental function in the scalar case. 
In the case of (4.4) with constant coefficients, the fundamental matrix dependent 

on the difference between the arguments is easily constructed if it is taken into account 
[4] that every matrix Q, (22 - E) satisfying the matrix equation (4.6) for 5 > E 
and for x < E , and having the jump 

CD (+ 0) - @ (- 0) = 1 (5.10 > 

for z = E , is fundamental. 
The matrix 

Q(y) = _t & @$$ec!‘dC (~500) (5.11) 

c+. 

for instance, possesses this property, where C, is the contour enclosing any m roots 

of the polynomial Q,, ( c), and C_ is the contour enclosing the remaining 12 - m 

roots. In order to see this, it is sufficient to take into account that each of the contour 
integrals in (5.11) satisfies (4.6 ) on the basis of (5.4). The equality (5.10 ) turns out 
to be valid on the basis of (5.6). The fundamental matrix can also be constructed by 
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applying a Fourier transform to (4.4) just as was done in obtaining the fundamental 
function (2.5 1, We consequently arrive at the formula 

ia;i 
(5.12) 

which is a particular realization of (5.11). 
Comparing (5.121, (5.11) with (5.51, we see that the fundamental matrix is 

expressed in terms of the came residues as the mat&ant (5.7 1, As in the scalar case I 
it will sometimes be con1 snient to substitute one of the following expressions: 

Q ($7 E> = Q, (x - E) f @ (X + E) (5.13 1 

into (5.9) in the presence of fundamental matrices of the type (5.11). 

N o t e, Formula (5.9) is valid even in the general case of (4.4) when a matrix 
P, is in front of the derivative instead of unity matrix (det PO =#= 0) and when both 

matrices P, and PI depend on the variable 5. The method elucidated here to 
construct the mat&ant and the ~ndarn~~l matrix is based on the Cauchy method [9] 
and on its development by M . G , Krein in application to an ordinary differential equa- 
tion with constant coefficients. 

6 . Let us apply the formula obtained to the solution of the problem posed above 
an the linear plastic hinge by assuming, for definiteness, that the edges 2 = a,, a, 
of the plate are hinge-supported, where 

a() = 0, a, = a. 

When using (5.9) it turns out to be convenient to operate with their blocks rather 
than with the com~nen~ of the matrices P,A,B,r,f l 

This is associated par - 
tially with the fact that the boundary conditions (4.5) are usually given in separated 
(with respect to the edges) form in application to definite sets (blocks) zf (x) of ele- 
ments of the vector functions z (5) = {z+ (z), z- (z)}. For example, in the case of 
the problem selected if us and M,” refer to the block Z+ (x) and c&‘, V,’ 
are referred to the block z- (x) , then the hinge-support conditions are written in 
the form 

z+ (0) = 0, z+ (a) = 0. (6.1) 

Let us represent the matrices in (4.4) - (4.7 ) tu the form 

The blocks of the Green’s matrix G (z, 5) and the basis matrix Y (5) will be 

marked by superscripts, i.e. Gjk (z, E), Ylr (z), i, k = O1l. On the basis of 



(4,8 ) and (6.2 ) we will hence have 

i. e, ) only one block of the Green’s matrix is needed tu solve the problem selected, 
On the basis of (6.2 ) t the matrix (5.2 ) is written in the block form 

(6.4) 

We denote the block of its inverse matrix by ML! , It is convenient to find them 

from the four equations obtained from the matrix equality 

We consequently obtain 

Qw 15) = (P” - P2Yt A* (5) = i 5% (6.5) 
j=o 

On the basis of (6.5 ) B the formula (5.7 ) for the mat&ant reduces to 

2 (x) = 2 A+(j) (x), u(z> = 
fixchfiz-sh@x d’u 

u(j) = v 
(6.61 

2P 
T , 

dxl 
j-0 

and after evaluation of the residues (5.12 ) acquires the form 

TO construct the basis matrix, let us write the boundary conditions (4,7 1 in blocks 

YOO (0) = Y?oi (a) = I, yroi (0) = vJ* (a) = 0 (6.8) 

The first and third equatities will be satisfied by virtues of (5. I > if we set 

in (5.8 1. The realization of the remaining two will result in the formulas 

p = fpf (a)]-* z jy p Z - j$?p (a) zzz - N’ 
(6.10) 
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Taking (6.6) into account, we find (p = UP) 

1 II 8” (P ch P t- sh P) 

N=2Psbz~ P4(3shp+pchp) 
(6.11) 

” = @S:+P 

1 j3” (2p -I- sh 2p) 

/jY(3sh2p-}- 2p) 

Therefore, the required basis function is determined by using (5.8 ) and (6.9 > - 
(6.11) by the formula 

IF (x) = 3 u(j) (x) Aj 
c j=:0 

(6.12) 

Taking the second expression from (5.13 > and using (6.7 ) and (6.12 1, on the basis 
of (5.9 1 we obtain the Green’s matrix for which the block needed has the form 

Go’ (g, E) = Irp (J: - E) - cp (5 + EN S+ - I@ (x - E) - @)@ + F)l x 

-~[sh~~S~NEi + (psh~~-~~ch~~)~~NE-~ -I- 

C6, 13 ) 

Pf 

3 [shfiEP+NE+ + (pshp$ - fig ch/3E) P+NE-j 

@a = p, .Er = Sf ‘i” flap+) 

~ar~g the components of the block obtained by subscripts S we have on the basis 
of(6.3). (6,2Iand(6.5), (6.11) 

UP (X) = - ~Go,ol(x, E)P”sin/3Z x(E)@- ~Gorol@, EW(W (6.141 

%“’ (5, 5;“= rp (x + E) - cp (3 - 5) ” k (s, $5 6) 

k (5, E, fi) = [2psBsh pl-l I&z ch fix sh BE + pg sh /3x ch @ - 
sh &r sh /3E (1 + p eQ cosecb p)] 

Hence, by using the inversion formula for a finite sine transform, we find the de - 
flection of the plate and the bending moment, After some manipulation t the next re - 
alization of condition (4,l) results in the following singular integral equation: 

Cl 
3 da ’ -- 

4n dx” a 
lnckh&1x--_f(X (E)@. -I- (6.15) 

co 

Cl 

s K,@, E)xCZ)dE= J@p- Qf+) (c~<~zQ~I 
ca 

The regular part of the kernel KJ (5, E) and the function Q (s) are deter- 
mined by the formulas 



138 G . Ia. Popov 

Finding the (approximate) solution of the equation obtained by orthogonal poly - 
normals, say, by using the expansion [lo 3 

In cth 1 y 1 = 111 

and the spectral relationship [11] 
1 

i d” ; 
-- 
n dx2 s 

-1 

we obtain the transform of the deflections by (6.14) and the plate deflections and de- 
sign forces by using it. 

In conclusion, let us note that the more complex problem of a cruciform plastic 
hinge can be considered and reduced to a system of two singular integral equations , and 
also problems in the presence of analogous open slots and narrow elastic beam rein - 
forcements. In general the method elucidated is applicable to all those boundary value 
problems with slits and inclusions which are solvable by the method of integral trans- 
forms upon removal of the defects mentioned, It is only important that the slits and 
inclusions be inscribed in an appropriate coordinate grid. 
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